Phase II Study of Fully Human BCMA-Targeted CAR T Cells (Zevorcabtagene Autoleucel) in Patients with Relapsed/Refractory Multiple Myeloma

W Chen¹, C Fu², B Fang³, A Liang⁴, Z Xia⁵, Y He⁶, J Lu⁷, H Liu⁸, M Hou⁹, Z Cai¹⁰, W Yang¹¹, S Hao¹², S Jiang¹³, H Jing¹⁴, J Liu¹⁵, X Du¹⁶, R Fu¹⁷, H Mei¹⁸, Z Zhu¹⁹, Y Yang²⁰, H Liu²¹, D Yuan²², H Zhao²², W Wang²², and Z Li²²

¹Beijing Chao-Yang Hospital; ²The First Affiliated Hospital of Socchow University, ¹Henan Cancer Hospital, ⁴Tongii Hospital of Tongii University, ¹Sun Yat-sen University Cancer Center; ¹Xiangya Hospital; ²The First Affiliated Hospital of Chara Medical University, ¹The First Affiliated Hospital of Zhenging Hospital, ⁴The First Affiliated Hospital of Venzhou Medical University, ¹The Kara Medical University, ¹Shenging Hospital, ⁴The First Affiliated Hospital of Venzhou Medical University, ¹The First Affiliated Hospital of Venzhou Medical University, ¹The First Affiliated Hospital of Venzhou Medical University, ²The First Affiliated Hospital of Venzhou Medical University, ¹The First Affiliated Hospita

Introduction

- B-cell maturation antigen (BCMA) is an established target for multiple myeloma.
- Zevorcabtagene autoleucel (zevor-cel or CT053) is an autologous chimeric antigen receptor (CAR) Tcell product with a fully human BCMA-specific single chain variable fragment (25C2) with high binding affinity and high monomer ratio (Yang 2022).
- Prior studies: Results for 14 subjects treated in phase I of LUMMICAR STUDY 1 showed a welltolerated safety profile and early, deep and sustainable responses with an ORR of 100% and a 78.6% stringent complete response/complete response (sCR/CR) rate (Chen 2021).
- We report the consistent safety and efficacy results of zevor-cel in Chinese patients with R/R MM who have failed at least prior 3 lines in the ongoing phase II LUMMICAR STUDY 1 (NCT03975907).

Objectives

- Evaluate the safety and efficacy of zevor-cel in subjects with R/R MM
- Primary endpoint was objective response rate (ORR) by independent review committee (IRC) assessment according IMWG 2016 criteria.

Methods

- The phase II study included subjects with R/R MM who had received ≥3 lines of therapy to evaluate zevor-cel safety, efficacy and pharmacokinetics for 24 months.
- Zevor-cel products were manufactured in CARsgen's facility in Shanghai, China.
- Prior to infusion, subjects received the lymphodepletion regimen (**Figure 1**):
- Fludarabine (25 mg/m²/day) for 3 days
- Cyclophosphamide (300 mg/m²/day) for 3 days
- Phase II dose: 102 subjects received zevor-cel with a target dose of 150×10⁶ CAR+ T cells.

Le	earn more about our ongoing zevor-cel clinical studies at clinicaltrials.gov:
•	LUMMICAR STUDY 1 (NCT03975907)
•	LUMMICAR STUDY 2 (NCT03915184)
•	China investigator-initiated trials (NCT03380039; NCT03716856; NCT03302403

Patient Population

- The phase II study treated 102 patients with relapsed/refractory multiple myeloma (R/R MM) (Table 1)
- Target dose: 150×10⁶ CAR+ T cells
- Data cutoff date: August 16, 2022

Table 1. Baseline subject characteristics

Characteristic	(N=102)
Age, median (range), y	59.5 (38-75)
Sex	
Men, No. (%)	55 (53.9)
Women, No. (%)	47 (46.1)
Years since diagnosis, median (range)	3.6 (0.7-16)
Prior lines of therapy, median (range)	4.0 (3-15)
Prior antitumor regimens, median (range)	6.0 (3-17)
International Staging System, No. (%)	
l or ll	63 (61.8)
III	39 (38.2)
Cytogenetic high risk, No. (%)	46 (45.1)
Extramedullary plasmacytoma, No. (%)	11 (10.8)
Bone marrow plasma cells, No. (%)	
< 50%	83 (81.4)
≥ 50%	17 (16.7)
Dual-class refractory, No. (%)	91 (89.2)
Triple-class refractory, No. (%)	23 (22.5)
Previous stem cell transplant, No. (%)	24 (23.5)

Zevor-cel manufacturing

25 mg/m²

(~3 weeks)

ICE Apheresis

F: Fludarabine

C: Cyclophosphamide 300 mg/m² Figure 1, LUMMICAR STUDY 1 schema

CAR T

treatment

D-5 D-4 D-3 D0

- Safety
 Zevor-cel was generally well tolerated (Table 2)
 - Cytokine release syndrome (CRS):
 - ≥ Grade 3: 6.9% (7/102)
 - All subjects with CRS recovered
 - Immune cell-associated neurotoxicity (ICANS): 2% (2/102), both grade 1
 - Treatment-related adverse event (AE) infections • ≥ Grade 3: 29.4% (30/102)
 - No AEs led to discontinuation of zevor-cel infusion, 1 treatment-related death reported

Table 2. Adverse event summary for subjects treated with zevor-cel at target dose

Adverse event	Subjects (N= No. (%)		
Treatment-related AEs (TRAEs) *	102 (100)		
Grade ≥3 hematologic TRAEs	102 (100)		
Cytokine release syndrome, any grade	92 (90.2)		
Grade 1	54 (52.9)		
Grade 2	31 (30.4)		
Grade 3	5 (4.9)		
Grade 4	2 (2.0)		
Grade ≥3 neurologic TRAEs	0		
ICANS, any grade	2 (2.0)		
Grade 1	2 (2.0)		
Grade ≥3 infection and infestation TRAEs	30 (29.4)		
Treatment-related SAE	38 (37.3)		
Death due to TRAE	1 (1.0)		
*Treatment related AEs indicate lymphodepletion-related AEs or			

zevor-cel infusion-related AEs.

Conclusions

LUMMICAR STUDY 1 demonstrated that zevor-cel infused at a target dose of 150×10⁶ CAR T cells, delivered deep and sustainable responses, with a well tolerated safety profile in subjects with heavily pretreated R/R MM.

Efficacy

Results

102)

- Median follow-up for 102 patients was 9 months (range, 0.4 to 17.8 months)
- Best responses per independent review committee (Table 3, Figure 2):
- ORR was 92.2% (94/102)
- CR/sCR rate was \geq 45.1% (46/102), trend to increase with duration of follow-up
- Remission rate at ≥ VGPR was ≥ 85.3% (87/102)
- Minimal residual disease (MRD) negativity at the 1 in 10⁻⁵ nucleated cells sensitivity level:
- 100% in subjects who achieved CR/sCR
- * 96.3% in subjects with \geq VGPR
- Median DOR and PFS have not been reached (Figures 3-4)
- At Month 9, the DOR rate was 86.1% and the PFS rate was 84.6%.

Table 3. Efficacy summary in zevor-cel treated patients

			Best Res
Best overall response *	≥ 6 months follow-up n=60	≥ 3 months follow-up N=102	100%
Median follow-up duration (range), months	12.1 (0.4-17.8)	9 (0.4-17.8)	80% 45.1
ORR, No. (%)	55 (91.7) [81 61 97 24]	94 (92.2) [85 13 96 55]	60%
sCR/CR, No. (%) [95% CI]	34 (56.7) [43.24, 69.41]	46 (45.1) [35.22, 55.26]	92.2% 40% 40.2
VGPR, No. (%)	19 (31.7)	41 (40.2)	20%
PR, No. (%)	2 (3.3)	7 (6.9)	6.99
≥VGPR, No. (%) [95% CI]	53 (88.3) [77.43, 95.18]	87 (85.3) [76.91, 91.53]	0% 7.89

*As of the data cutoff date, per independent review committee assessment. Patients completed the indicated duration of follow-up or withdrew early.

Figure 3. Duration of response

References

- Chen W, Fu C, Cai Z, et al. Sustainable Efficacy and Safety Results from LUMMICAR STUDY 1: A Phase 1/2 Study of Fully Human B-Cell Maturation Antigen-Specific CAR T Cells (C1053) in Chinese Subjects with Relapsed and/or Refractory Multiple Myeloma. Blood 2021; 138 (Supplement 1): 2821.
- Yang M, Zhang W, Yu K, et al. A novel BCMA CAR-T-cell therapy with optimized human scFv for treatment of relapsed/refractory multiple myeloma: results from phase I clinical trials. *Haematologica*. 2022;107(8):1960-1965.

CR/sCF

Figure 2. Best response

Figure 4. Progression-free survival

Acknowledgements

We deeply appreciate the contributions of all study participants, especially the study subjects and their families.